KINETIC AND EQUILIBRIUM CONTROL IN THE FORMATION OF GEM-DISULFOXIDE EPIMERS

Cal Y. Meyers*and Laurence L. Ho
Department of Chemistry, Southern Illinois University, Carbondale, Ill. 62901
Atsuyosh1 Ohno and Masayuki Kagami
Sagami Chemical Research Center, Sagamihara-shi, Kanagawa-ken, 229 Japan
(Received in USA 2 January 1974; received in UK for pablication 23 January 1974)

We wish to report the first example of equilibrium control of the ratio of disulfoxide epimers formed by the oxidation of gem-disulfides (thioacetals). Benzophenone bis(benzylthio) acetal (I) was rapidly and quantitatively converted at $0-4^{\circ}$ into a mixture of the epimeric disulfoxides, $2 a$ and 2b, in a ratio that continued to change progressively even well after the oxidation was completed. Spontaneous interconversion of these epimers was also observed in a chloroform solution originally containing only one epimer. These observations suggest that kinetic and equilibrium control are responsible for the proportions of $2 a$ and $2 b$ in the reaction mixtures.

These results are very surprising in view of those recently reported by Tsuchihashi ${ }^{1}$ who concluded that the epimer ratios of a series of unsubsti-tuted-methylene disulfoxides, $R S(0) \mathrm{CH}_{2} S(0) R$ ', prepared from the monosulfox1des, depend only on kinetic control. The methylene disulfoxides showed no tendency to epimerize, an observation apparently in agreement with other reports describing the preparation and isolation of similar disulfoxide epimers. ${ }^{2-4}$

Conversions of 1 into 2 with 2 MCPBA in CHCl_{3} at $0-4^{\circ}$ were virtually completed within $3 \mathrm{~min}, 5$ and epimers $\frac{2 a}{}$ and $2 b$ were easily distinguishable by their respective $C H_{2} A B$ quartets. ${ }^{6}$ The reaction mixtures were washed with aq NaHSO_{3} and NaHCO_{3} or treated with dry NH_{3} and the organic layer was con-
centrated to an oil; trituration with pentane-Et 2 provided white cryatala of $\underline{2}$ ($85-90 \%$), mp 98-100 ; nmr, $\delta^{C D C l} 37.80-7.00(m, \mathrm{Ph}), 3.84$ and 3.37 ($\mathrm{AB} \mathrm{q}, \mathrm{J}=12.5 \mathrm{~Hz}, \mathrm{CH}_{2}$ of 2 a) and 4.02 and $3.34\left(\mathrm{ABq} \mathrm{q}, \mathrm{J}=12.5 \mathrm{~Hz}, \mathrm{CH}_{2}\right.$ of 2b). Examination (nmr) of the reaction mixtures indicated that $2 a$ and $2 b$ were present in a ratio of $42: 58$ after 3 min at $0-4^{\circ}$, $35: 65$ after 10 min at $0-4^{\circ}$, 28:72 after 30 min at 25°, and $25: 75$ after 70 min at 25°.

Epimer 2 a $(10-15 \%)$ was isolated when the reaction was terminated withIn a few minutes and the product was recrystallized ($\mathrm{CHCl}_{3}-\mathrm{Et}_{2} \mathrm{O}$) without de$l_{\text {ay }}$; mp $101-102^{\circ}$; $1 \mathrm{r}, \vee_{\text {max, } \mathrm{Cm}^{-1}} 1055$, 1074 and $\nu^{\mathrm{KBr}} 1050,1070$ ($\mathrm{d}, \mathrm{ve}, \mathrm{S}-0$ str; there was no 0-S-O absorption of the corresponding sulfone ${ }^{5}$); nmr, $\mathrm{fCDCl}_{3} 7.80-7.60,7.60-7.40,7.35-7.00$ (3 groups of complex multiplets, 20 H , $\mathrm{Ph})$ and 3.84 and $3.37\left(\mathrm{AB} \mathrm{q}, \underline{\mathrm{J}}=12.5 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2}\right) .7$

Epimer $2 \mathrm{~b}(10-15 \%$) was isolated when work-up was delayed and recrystallizatior. was allowed to proceed over an extended period; nmr, $\boldsymbol{f}^{C D C D_{3}} 7.80-$ $7.40,7.35-7.00$ (2 groups of multiplets, $20 \mathrm{H}, \mathrm{Ph}$) and 4.02 and 3.34 (AB q , $J=12.5 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2}$); mp and ir were identical with those of 2 a .7

A CDCl_{3} solution of one pure epimer in a closed nmr tube gradually indicated the formation of the other epimer. Oxidation of $1,2 a$, or $2 b$ quantitatively provided the same disulfone, mp 204° (dec). 5

The equilibration of 2 may be compared to the racemization of benzylic sulfoxides. Mislow has shown that benzyl tolyl sulfoxide undergoes racemiat 135° via a homolytic dissociation-recombination mechanism, and the activation energy for the racemization, $44 \mathrm{kcal} / \mathrm{mol}$, was equated with the upper limit of the bond dissociation energy, $\underline{D}\left(\mathrm{PhCH}_{2}-\mathrm{SOTOL}\right) .8$ on the other hand, alkyl and aryl sulfoxides, whose carbon-sulfur bond dissociation energies are in the neighborhood of $56-69 \mathrm{kcal} / \mathrm{mol}$, generally require temperatures above 200° for racemization, and the process occurs by pyramidal inversion without bond sciseion. $8 b$ since benzylic carbon-sulfur bonds have bond dissociation energies $12-25 \mathrm{kcal} / \mathrm{mol}$ lower than those of the corresponding alkyl carbonsulfur bonds, 9 the bond dissociation energies of benzhydrylic carbon-sulfur bonds should be lowered to a greater degree. For 2 , therefore, the bond dissociation energy, $\mathrm{D}\left(\mathrm{PhCH}_{2} \mathrm{SOCPh}_{2}-\mathrm{SOCH}_{2} \mathrm{Ph}\right)$, should be in the neighborhood of 20-30 kcal/mol, and homolytic dissociation-recombination would reasonably account for the observed equilibration of $2 \mathrm{a}-2 \mathrm{~b}$ at $0-25^{\circ}$. In contrast, the bond dissociation energies of unsubstituted-methylene disulfoxide epimers, D(RSOCH $\left.L_{2}-S O R '\right)$, should be considerably larger, and their equilibration by either mechanism would proceed too slowly to be recognized at moderate tellperatures.

Equilibration of 2 by the homolytic processes is also supported by observations not compatible with other mechanisma: 1) Equilibration in CHCl_{3} was significantly faster in the presence of MCPBA, a free-radical progenitor; 2) After standing for several days $\left(25^{\circ}\right)$, reaction mixtures of $\underline{2}$ exhibited new resonances in the CH_{2} region which could be associated with dimerization products formed slowly from the equilibrating species; 10 and 3) Although pure $2 b$ melted sharply at $101-102^{\circ}$, it was transformed into an intractable pink viscous oil when dissolved in CCl_{4} and heated at 80° for $15-30 \mathrm{~min}$, a result suggesting that free-radical reactions involving CCl_{4} were initiated during the equilibration. ${ }^{10,11}$

The meso and di assignments reported for the unsubstituted-methylene disulfoxide epimers have been based on the non-equivalence and equivalence, respectively, of the methylene protons. ${ }^{1-4}$ The absence of these corresponding protons in 2 precludes the direct application of this technique. However, tentative assignments of $2 a-m e s o$ and $2 b-d$ were deduced through an extension of this technique. Thus, of the two epimers, 2a exhibited the more complex phenyl-proton resonance, an observation which was associated with the non-equivalent gem-diphenyls of the meso structure. ${ }^{12}$ In support of these assignments, our data (extrapolated, $t \rightarrow 0$) suggest that $2 a$ may be the kinetically preferred epimer; in all of the kinetically controlled oxidations reported by Tsuchihashi, the meso (erythro) disulfoxide predominated. A detailed investigation of these phenomena is in progress. ${ }^{13}$

NOTES AND REFERENCES

1. G. Tsuchihashi, K. Ogura, and C. Mochizuki, Chem. Soc. Japan, 26 th Annual

Meeting, 1972, Abstracts, Vol. III, p. 1153; and private communications with Dr. Tsuchihashi.
2. J. L. Greene and P. B. Sheviln, Chem. Commun., 1092 (1971).
3. M. Cinquini, S. Colonna, and F. Taddei, Boll. Sci. Fac. Chim. Ind. Bologna, 27, 231 (1969).
4. R. Louw and H. N1ewenhuyse, Chem. Commun., 1561 (1968).
5. C. Y. Meyers, L. L. Ho, A. Ohno, and M. Kagami, Tetrahedron Lett., 4751 (1973).
6. The two equivalent $\mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}$ eroups (diastereotopic protons with respect to S-0) within each epimer are different for $2 a$ and $2 b$.
7. Elemental analysis was correct for structure 2 .
8. (a) E. G. Miller, D. R. Rayner, H. T. Thomas, and K. Mislow, I. Amer. Chem. Soc., 90, 4861 (1968); (b) D. R. Rayner, A. J. Gordon, and K. Mislow,

1bid., 90, 4854 (1968).
9. H. Mackle, Tetrahedron Lett., 1159 (1963).
10. These observations parellel those of Mislow who similarly accounted for the formation of other products during the thermal racemization of benzyl tolyl sulfoxide, especially when carried out in p-xylene (ref 8a).
11. (a) Radical-chain reactions of CCl_{4} are especially rapid (see C. Walling, "Free Radicals in Solution," John Wiley and Sons, New York, 1957, Chapter 6); (b) It is significant that homolytic dissociation would also account for certain characteristics exhibited by species related to 2 ; e.g., the cleavage reactions of $\underline{1}$ (ref 5), and our observation that trityl phenyl sulfoxide apparently undergoes oxidation (to the sulfone) faster than it is formed from the sulfide and MCPBA (C. Y. Meyers and M.-L. Hau, to be published); (c) Rapid dissociation-recombination would also account for the surprisingly low and virtually identical melting points of $2 \mathrm{a}, \mathrm{2b}$, and their mixtures.
12. The phenyl-proton resonance of 2 a resembles that of benzhydryl benzyl sulfoxide which posseses non-equivalent gem-diphenyls. In contrast, benzhydryl benzyl sulfide and sulfone, as well as 1 and 1 ts sulfone, whose respective gem-diphenyls are equivalent, exhibit much simpler phenyl-proton resonance (cf. C.Y. Meyers and G. J. McCollum, Tetrahedron Lett., 289 (1973) and ref 5).
13. Support by National Science Foundation Grant GF-3676 and the Japan Society for the Promotion of Science is gratefully acknowledged.

